Thứ Sáu, 14 tháng 2, 2014

hoadaicuong-pt


Khi viết 1s
2
(đọc là “một s hai”) thì hiểu là có 2 điện tử ở phân lớp s của lớp thứ nhất (số 1 chỉ
thứ tự của lớp điện tử, chữ s chỉ phân lớp, còn số 2 viết bên trên phía phải của s cho biết số điện
tử có mặt trong phân lớp); Khi viết 2p
5
(đọc là “hai p năm”) hiểu là có 5 điện tử ở phân lớp p của
lớp thứ hai; khi viết 3d
8
(đọc là “3 d 8”) hiểu là có 8 điện tử ở phân lớp d của lớp thứ ba; Khi viết
4f
12
(đọc là “bốn f mười hai”) hiểu là có 12 điện tử ở phân lớp f của lớp 4…

Phân lớp s p d f g h
Số obitan trong phân lớp 1 3 5 7 9 11
Số điện tử tối đa trong phân lớp 2 6 10 14 18 22




Số thứ
tự lớp
điện tử
Tên lớp Tên phân lớp Số
obitan
(orbital)
Số điện tử
1 K 1s 1 2
2 L 2s; 2p 4 8
3 M 3s; 3p; 3d 9 18
4 N 4s; 4p; 4d; 4f 16 32
5 O 5s; 5p; 5d; 5f; 5g 25 50
n n
2
2n
2

Như vậy
lớp điện tử thứ n
sẽ có
n
2
obitan

2n
2
điện tử
.
Giản đồ cách nhớ
sau đây giúp biết thứ tự mức năng lượng tăng dần của các phân lớp.

10s ….
9s 9p 9d 9f 9g 9h 9i 9j 9k
8s 8p 8d 8f 8g 8h 8i 8j
7s 7p 7d 7f 7g 7h 7i
6s 6p 6d 6f 6g 6h
5s 5p 5d 5f 5g

n + l = 9
4s 4p 4d 4f
n + l = 8

3s 3p 3d
n + l = 6
2s 2p
n + l = 4

1s
n + l = 3

n + l = 1

Thứ tự mức năng lượng tăng dần các phân lớp như sau: 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p <
5s < 4d < 5p <6s < 4f < 5d < 6p < 7s < 5f < 6d < 7p < 8s < 5g < 6f < 7d < 8p < 9s < 6g < 7f < 8d
….

Trừ một số trường hợp đặc biệt [như các nguyên tố Cr (Z = 24), Cu (Z = 29), Zn (Z = 30), Mo (Z
= 42), Ag (Z = 47), Au (Z = 79), …], hầu hết cấu hình electron của các nguyên tố hóa học được
viết theo thứ tự tăng dần mức năng lượng như giản đồ cách nhớ trên.

Thí dụ: Viết cấu hình electron của các nguyên tố sau đây: H, He, Li, Be, B, C, N, O, F, Ne, Na,
Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se,
Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe.

Cho biết:
Nguyên
tố
H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar
Z 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Nguyên
tố
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br
Z 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Nguyên
tố
Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te
Z 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Nguyên tố I Xe
Z 53 54

H (Z = 1): 1s
1

He (Z = 2): 1s
2

Li (Z = 3): 1s
2
2s
1

Be (Z = 4): 1s
2
2s
2

B (Z = 5): 1s
2
2s
2
2p
1

C (Z = 6): 1s
2
2s
2
2p
2

N (Z = 7): 1s
2
2s
2
2p
3

O (Z = 8): 1s
2
2s
2
2p
4

F (Z = 9): 1s
2
2s
2
2p
5

Ne (Z = 10): 1s
2
2s
2
2p
6

Na (Z = 11): 1s
2
2s
2
2p
6
3s
1
hay [Ne] 3s
1
Mg (Z = 12): 1s
2
2s
2
2p
6
3s
2

Al (Z = 13): 1s
2
2s
2
2p
6
3s
2
3p
1
hay [Ne] 3s
2
3p
1
Si (Z = 14): 1s
2
2s
2
2p
6
3s
2
3p
2

P (Z = 15): 1s
2
2s
2
2p
6
3s
2
3p
3

S (Z = 16): 1s
2
2s
2
2p
6
3s
2
3p
4

Cl (Z = 17): 1s
2
2s
2
2p
6
3s
2
3p
5

Ar (Z = 18): 1s
2
2s
2
2p
6
3s
2
3p
6

K (Z = 19): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
1

Ca (Z = 20): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
hay [Ar] 4s
2
Sc (Z = 21): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
1
hay: 1s
2
2s
2
2p
6
3s
2
3p
6
3d
1
4s
2

Ti (Z = 22): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
2
hay: 1s
2
2s
2
2p
6
3s
2
3p
6
3d
2
4s
2
hay [Ar]3d
2
4s
2

V (Z = 23): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
3

Cr
(Z = 24): 1s
2
2s
2
2p
6
3s
2
3p
6

4s
1
3d
5

(thay vì 4s
2
3d
4
. 3d
5
, d bán bão hòa điện tử, bền, nên cấu hình
electron của Crom trái với qui tắc Klechkovski. Điều này chứng tỏ
cấu hình 4s
1
3d
5
bền hơn 4s
2
3d
4
, hay năng lượng 4s
1
3d
5
thấp hơn
4s
2
3d
4
)
Mn (Z = 25): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
5

Fe (Z = 26): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
6

Co (Z = 27): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
7

Ni (Z = 28): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
8

Cu
(Z = 29): 1s
2
2s
2
2p
6
3s
2
3p
6

4s
1
3d
10

(thay vì: 4s
2
3d
9
. 3d
10
, d bão hòa điện tử, bền, nên cấu hình điện tử
của Cu không theo đúng qui tắc Klechkovski)

Zn (Z = 30): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10

Ga (Z = 31): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
1
hay: 1s
2
2s
2
2p
6
3s
2
3p
6
3d
10
4s
2
4p
1

Ge (Z = 32): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
2

As (Z = 33): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
3

Se (Z = 34): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
4

Br (Z = 35): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
5

Kr (Z = 36)): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6

Rb (Z = 37): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6
5s
1
hay [Kr] 5s
1
Sr (Z = 38): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6
5s
2
hay [Kr] 5s
2

Y (Z = 39): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6
5s
2
4d
1
hay [Kr]4d
1
5s
2

Zr (Z = 40): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6
5s
2
4d
2

Nb (Z = 41): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6
5s
2
4d
3

Mo
(Z = 42): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6

5s
1
4d
5

(thay vì: 5s
2
4d
4
, do d
5
bán bão hòa, bền)
Tc (Z = 43): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6
5s
2
4d
5

Ru (Z = 44): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6
5s
2
4d
6

Rh (Z = 45): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6
5s
2
4d
7

Pd (Z = 46): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6
5s
2
4d
8

Ag
(Z = 47): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6

5s
1
4d
10

(thay vì: 5s
2
4d
9
)

Cd (Z = 48): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6
5s
2
4d
10

In (Z = 49): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6
5s
2
4d
10
5p
1

Sn (Z = 50): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6
5s
2
4d
10
5p
2

Sb (Z = 51): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6
5s
2
4d
10
5p
3

Te (Z = 52): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6
5s
2
4d
10
5p
4

I (Z = 53): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6
5s
2
4d
10
5p
5

Xe (Z = 54): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6
5s
2
4d
10
5p
6


II.3. Qui tắc Hund (Sự phân bố điện tử vào obitan, orbital, vân đạo)

Điện tử được phân bố vào obitan như thế nào để có tổng số spin cao nhất (Tất cả các obitan của
cùng một phân lớp đã chứa một điện tử có mũi tên hướng lên rồi mà còn dư điện tử, thì điện tử
thứ nhì mới được sắp vào cùng một obitan với mũi tên hướng xuống)

Chú ý là phân lớp s chỉ có 1 obitan; Phân lớp p có 3 obitan; Phân lớp d chứa có 5 obitan; phân
lớp f có 7 obitan. Mỗi obitan chứ
a tối 2 điện tử với spin ngược chiều nhau (hai mũi tên ngược
chiều nhau trong một ô vuông hay một vòng tròn,
↑↓
hay
↑↓
)

Thí dụ
:
Hãy cho biết sự phân bố điện tử vào obitan nguyên tử của các nguyên tố sau đây: C, N, O, F, Na,
Mg, Al, Si, P, S, Cl, K, Ca, Cr, Mn, Fe, Cu, Zn, Br.
Cho biết :

Ntố C N O F Na Mg Al Si P S Cl K Ca Cr Mn Fe Cu Zn Br
Z 6 7 8 9 11 12 13 14 15 16 17 19 20 24 25 26 29 30 35

Ta viết cấu hình electron theo qui tắc Klechkovski trước rồi dựa vào cấu hình electron và qui tắc
Hund để phân bố điện tử vào các obitan sau.


C : 1s
2
2s
2
2p
2


Sự phân bố điện tử vào obitan:
↑↓

↑↓





1s 2s 2p

N : 1s
2
2s
2
2p
3


Sự phân bố điện tử vào obitan:
↑↓

↑↓







1s 2s 2p


O : 1s
2
2s
2
2p
4


Sự phân bố điện tử vào obitan:
↑↓

↑↓

↑↓





1s 2s 2p

F : 1s
2
2s
2
2p
5


Sự phân bố điện tử vào obitan:
↑↓

↑↓

↑↓

↑↓



1s 2s 2p


Ne : 1s
2
2s
2
2p
6


Sự phân bố điện tử vào obitan:
↑↓

↑↓

↑↓

↑↓

↑↓

1s 2s 2p


Na : 1s
2
2s
2
2p
6
3s
1


Sự phân bố điện tử vào obitan:
↑↓

↑↓

↑↓

↑↓

↑↓



1s 2s 2p 3s

Cr: 1s
2
2s
2
2p
6
3s
2
3p
6
4s
1
3d
5


Sự phân bố điện tử vào obitan:


↑↓

↑↓

↑↓

↑↓

↑↓

↑↓

↑↓

↑↓

↑↓













1s 2s 2p 3s 3p 3d 4s

Chú ý

C.1.
Khi viết
cấu hình electron của một ion
(nhất là
ion dương
) thì ta nên viết cấu hình điện tử
của nguyên tử tương ứng trước, sau đó mới viết cấu hình electron của ion, chú ý là sự mất
điện tử để tạo ion dương ứng với sự mất điện tử ở lớp ngoài cùng (lớp hóa trị, lớp có trị số
lớn nhất trong cấu hình electron)

Thí dụ
: Viết cấu hình electron của các ion sau đây: Fe
2+
, Fe
3+
, Mn
2+
, Cu
+
, Zn
2+
.

Fe (Z = 26): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
6

Fe
2+
(24 điện tử): 1s
2
2s
2
2p
6
3s
2
3p
6
3d
6

(mất 2 e

ở lớp ngoài cùng, lớp có trị số lớn nhất trong cấu
hình electron, lớp 4, ở 4s
2
, chứ không phải ở lớp 3, 3d
6
)
Fe
3+
(23 e

): 1s
2
2s
2
2p
6
3s
2
3p
6
3d
5

Nếu viết trực tiếp cấu hình electron của Fe
3+
(23 e

) thường viết là:
1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
3
(cấu hình electron này sai)

Mn (Z = 25) (25 e

): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
5

Mn
2+
(23 e

): 1s
2
2s
2
2p
6
3s
2
3p
6
3d
5


Cu (Z = 29): 1s
2
2s
2
2p
6
3s
2
3p
6
4s
1
3d
10
Cu
2+
(27 điện tử): 1s
2
2s
2
2p
6
3s
2
3p
6
3d
9


S (Z = 16): 1s
2
2s
2
2p
6
3s
2
3p
4

S
2−
(18 electron): 1s
2
2s
2
2p
6
3s
2
3p
6


C.2. Số thứ tự nguyên tử

Z
(Số hiệu nguyên tử, Số điện tích hạt nhân, Bậc số nguyên tử) của
một nguyên tố cho biết có Z proton có trong nhân nguyên tử, nó cũng bằng số điện tử ở
ngoài nhân (nếu không là ion), cho biết nguyên tố hóa học ở
ô
thứ Z trong bảng hệ thống
tuần hoàn (bảng phân loại tuần hoàn).


Thí dụ: Na (Natri, Z = 11) như vậy Na ở ô thứ 11 trong bảng hệ thống tuần hoàn; Fe (Sắt, Z
= 26) như vậy Fe ở ô thứ 26 trong bảng hệ thống tuần hoàn.

C.3.

Trị số lớp lớn nhất
trong cấu hình electron của một nguyên tử cho biết
chu kỳ
của nguyên
tố này trong bảng hệ thống tuần hoàn. Thứ tự của chu kỳ bằng trị số lớp điện tử lớn nhất
trong cấu hình electron.


Thí dụ:
Fe (Z = 26) có cấu hình electron là 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
6
như vậy Fe ở ô thứ 26, chu kỳ
4.
Cl (Z = 17) có cấu hình electron là: 1s
2
2s
2
2p
6
3s
2
3p
5
như vậy Cl ở ô thứ 17, chu kỳ 3.

C.4. Nguyên tố thuộc phân nhóm chính
(cột A) là các nguyên tố mà cấu hình electron của
chúng không có điện tử d, f hoặc nếu có d, f thì d, f đã bão hòa điện tử, d
10
, f
14
(trừ các
nguyên tố thuộc phân nhóm phụ IB, IIB). Với nguyên tố thuộc phân nhóm chính, số điện tử
ở lớp ngoài cùng cho biết thứ tự của phân nhóm chính. Thứ tự của phân nhóm chính bằng
tổng số điện tử ở lớp điện tử ngoài cùng (lớp có trị số lớn nhất trong cấu hình electron)


ns
1
: IA (n: lớp ngoài cùng, lớp có trị số lớn nhất trong cấu hình electron)
ns
2
: IIA
ns
2
np
1
: IIIA
ns
2
np
2
: IVA
ns
2
np
3
: VA
ns
2
np
4
: VIA
ns
2
np
5
: VIIA
ns
2
np
6
: VIIIA (Nhóm khí hiếm, khí trơ, còn gọi là nhóm 0, ở cuối mỗi chu kỳ)

Thí dụ
:
Cl (Clor, Clo, Z = 17) có cấu hình electron là: 1s
2
2s
2
2p
6
3s
2
3p
5
như vậy Cl ở ô thứ 17,
chu kỳ 3, phân nhóm chính nhóm VII (hay VIIA).

Ge (Germanium, Gemani, Z = 32) có cấu hình electron là: 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
2

như vậy Ge ở ô thứ 32, chu kỳ 4, phân nhóm chính nhóm IV (IVA).

I (Iod, Iot, Z = 53) có cấu hình electron là: 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6
5s
2
4d
10
5p
5
như
vậy I ở ô thứ 53, chu kỳ 5, phân nhóm chính nhóm VII hay VIIA.


C.5. Nguyên tố thuộc phân nhóm phụ
(hay cột B) là các nguyên tố mà cấu hình electron của
chúng có chứa điện tử d hay f chưa đủ (d
1 – 9
, f
1 – 13
), trừ các nguyên tố thuộc phân nhóm
phụ nhóm I và II (IB, IIB). Với nguyên tố thuộc phân nhóm phụ (cột B), thường căn cứ vào
tổng số điện tử ở phân lớp s ngoài cùng với số điện tử ở phân lớp d kế bên trong, để xác
định phân nhóm phụ. Thứ tự phân nhóm phụ thường bằng tổng số điện tử s ngoài cùng và
điện tử d ở lớp kế bên trong.

(n – 1)d
10
ns
1
: IB
(n: lớp lớn nhất trong cấu hình electron)

(n – 1)d
10
ns
2
: IIB
(n – 1)d
1
ns
2
: IIIB
(n – 1)d
2
ns
2
: IVB
(n – 1)d
3
ns
2
: VB
(n – 1)d
4
ns
2
hoặc (n – 1)d
5
ns
1
: VIB
(n – 1)d
5
ns
2
: VIIB
(n – 1)d
6
ns
2
; (n – 1)d
7
ns
2
; (n – 1)d
8
ns
2
: VIIIB
(Ở phân nhóm
phụ nhóm VIII có bộ ba nguyên tố)

Thí dụ
:
Fe (Z = 26) có CH e là: 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
6
như vậy Fe ở ô thứ 26, chu kỳ 4, phân
nhóm phụ nhóm VIII (hay VIIIB).

V (Vanadium, Vanađi, Z = 23) có CH e là: 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
3
như vây V ở ô thứ 23,
chu kỳ 4, phân nhóm phụ nhóm V (VB).

Cu (Đồng, Z = 29) có CH e là: 1s
2
2s
2
2p
6
3s
2
3p
6

4s
1
3d
10

như vậy Cu ở ô thứ 29, chu kỳ 4,
phân nhóm phụ nhóm I (IB).

Zn (Kẽm, Z = 30) có CH e là: 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
như vậy Zn ở ô thứ 30, chu kỳ 4,
phân nhóm phụ nhóm II (IIB).

Pd (Paladium, Palađi, Z = 46) có CH e là: 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
10
4p
6
5s
2
4d
8
như vậy
Pd ở ô thứ 46, chu kỳ 5, phân nhóm phụ nhóm VIII (VIIIB).

C.6.
Các nguyên tố mà có số điện tử ở lớp ngoài cùng (lớp có trị số lớn nhất trong cấu hình
electron, lớp hóa trị) 1, 2 hay 3 điện tử, thì đó là các kim loại (trừ H, He). Do đó tất cả các
nguyên tố thuộc phân nhóm phụ (cột B, có 1, 2 điện tử ngoài cùng) đều là các kim loại.
Kim loại có tính khử, chúng dễ cho 1, 2 hay 3 điện tử ngoài cùng để tạo các ion dương
tương ứng. Số điện tử
được cho như thế nào để ion dương thu được có cấu hình điện tử
bền, thường gặp là cấu hình 8 điện tử ngoài cùng, giống khí trơ (khí hiếm) gần nó trong
BPLTH.

Thí dụ
:
Na (Natri, Natrium, Z = 11), CH e của Na là: 1s
2
2s
2
2p
6
3s
1
. Như vậy Natri ở ô thứ 11, chu
kỳ 3, phân nhóm chính nhóm I (IA) trong BPLTH. Na có 1 điện tử ở lớp điện tử ngoài cùng
nên Na là một kim loại. Na dễ cho điện tử hóa trị này để tạo ion Na
+
(Ion Na
+
có 8 điện tử
ngoài cùng, giống cấu hình điện tử của khí trơ Ne gần nó trong BPLTH). Do đó Na là một
kim loại mạnh, nó có tính khử mạnh, nó có hóa trị I và số oxi hóa +1 trong các hợp chất.

Ca (Canxi, Calcium, Z = 20) có CH e là: 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
. Như vậy Ca ở ô thứ 20, chu
kỳ 4, phân nhóm chính nhóm II (IIA) trong BPLTH. Ca có 2 điện tử ngoài cùng nên Ca là
một kim loại, Ca có tính khử mạnh, nó dễ cho 2 điện tử hóa trị này để tạo ion Ca
2+
. Ion
Ca
2+
có 8 điện tử ngoài cùng, giống cấu hình điện tử của khí trơ Ar (Argon, Z = 18) gần nó
trong BPLTH. Do đó Ca có hóa trị II, có số oxi hóa +2 trong các hợp chất.

Mn (Mangan, Z = 25) có CH e là:1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
5
. Mn ở ô thứ 25, chu kỳ 4, phân
nhóm phụ nhóm VII (VIIB) trong BPLTH. Mn có 2 điện tử ở lớp điện tử ngoài cùng (4s
2
)
nên Mn là một kim loại, nó có tính khử. Mn dễ cho 2 điện tử này để tạo ion Mn
2+
(Mn
2+

cấu hình điện tử d bán bão hòa, 3d
5
, nên Mn
2+
khá bền, các hợp chất có hóa trị cao của Mn
như Mn (VII), Mn (VI), Mn (IV) như KMnO
4
, K
2
MnO
4
, MnO
2
có tính oxi hóa, trong môi
trường axit (H
+
), chúng dễ bị khử tạo hợp chất của Mn có hóa trị II (muối Mn
2+
)).

C.7.
Các nguyên tố có số điện tử ngoài cùng là 7, 6, 5 hay 4 thường là các phi kim (không kim
loại). Đây là các nguyên tố ở các chu kỳ đầu của các phân nhóm chính nhóm VIIA, VIA,
VA, IVA (gồm F, Cl, Br, I, O, S, N, P, C, Si). Các phi kim có tính oxi hóa, chúng dễ nhận
thêm 1, 2, 3 điện tử để tạo các ion âm tương ứng. Số điện tử nhận thêm vào như thế nào để
ion âm thu được có cấu hình điện tử bền, thường là 8 điện tử ngoài cùng, giống cấu hình
điện tử khí trơ gầ
n nó trong BPLTH.

Thí dụ
:
O (Oxi, Oxigen, Z = 8) có CH e là: 1s
2
2s
2
2p
4
. Như vậy O ở ô thứ 8, chu kỳ 2, phân nhóm
chính nhóm VI (VIA). O có 6 điện tử ngoài cùng nên O là một phi kim. O dễ nhận 2 điện
tử tạo ion O
2−
(ion này có 8 điện tử ngoài cùng, giống khí trơ Ne gần nó trong BPLTH). Do
đó O có tính oxi hóa, nó có hóa trị II, có số oxi hóa thường gặp là

2 trong các hợp chất

Cl (Clo, Clor, Z = 17) có CH e là: 1s
2
2s
2
2p
6
3s
2
3p
5
. Như vậy Cl ở ô thứ 17, chu kỳ 3,
phân nhóm chính nhóm VII (VIIA). Cl có 7 điện tử ngoài cùng nên Cl là một phi kim. Cl
dễ nhận thêm 1 điện tử để tạo ion Cl

(ion này có 8 điện tử ngoài cùng, giống khí trơ Ar
gần nó trong BPLTH). Do đó Cl là một phi kim mạnh, nó có tính oxi hóa mạnh, nó có hóa
trị I, có số oxi hóa

1 thường gặp trong các hợp chất.

C.8. H
(hidrogen, Hiđro, Z = 1) tuy có 1 điện tử hóa trị nhưng nó là một
phi kim
. Các
nguyên tố
áp cuối và cuối của các phân nhóm chính VIA, VA, IVA
(như Po, Sb, Bi, Sn, Pb…) tuy
có 6, 5, 4 điện tử ngoài cùng nhưng là các
kim loại
(Do ở áp cuối và cuối phân nhóm, bán
kính nguyên tử lớn, xa nhân, khó nhận thêm điện tử vào, ngược lại, do xa nhân nên điện tử
ngoài cùng ít được nhân giữ chặt chẽ, nên dễ bị mất, thể hiện tính kim loại).








III. Vận tốc phản ứng


Vận tốc phản ứng là một đại lượng cho biết sự nhanh hay chậm của một phản ứng.

Có những phản ứng xảy ra rất nhanh như sự trung hòa giữa một axit (acid) và bazơ (baz,
base) mạnh, sự nổ của thuốc súng, nhưng cũng có những phản ứng xảy ra rất chậm như
phản este – hóa giữa một axit hữu cơ và rượu, sự ăn mòn hóa học của một miếng kim loại
sắt khi để ngoài khí quyển.

Vận tốc phản ứng được căn cứ vào lượng mất đi của tác chất hay lượng thu được của sản
phẩm trong một đơn vị thời gian. Với phản ứng xảy ra trong dung dịch (lỏng) hay giữa các
chất khí, vận tốc phản ứng thường được căn cứ vào độ giảm nồng độ tác chất (mol/lít) hay
độ tăng nồng độ của sản phẩm trong một đơn vị thời gian.

Thí dụ với phản ứng: mA(dd) + nB(dd) → pC(dd) + qD(dd) thì vận tốc phản ứng
theo lý thuyết là:


v =
dt
Dd
qdt
Cd
pdt
Bd
ndt
Ad
m
][1][1][1][1
==−=−


Vận tốc phản ứng bằng trừ đạo hàm của nồng độ tác chất theo thời gian hay bằng đạo hàm của nồng độ sản
phẩm theo thời gian. Thêm dấu trừ (−) để vận tốc phản ứng có trị số dương; Chia cho các hệ số tương ứng để
vận tốc phản ứng tính theo bất kỳ chất nào (sản phẩm cũng như tác chất) đều gi
ống nhau.

Về phương diện thực nghiệm, biểu thức vận tốc phản ứng được thiết lập dựa vào thực
nghiệm.

Với phản ứng: A + B
⎯→⎯
Sản phẩm

Biểu thức của vận tốc phản ứng là: v = k[A]
m
[B]
n


Trong đó: v: là vận tốc (tốc độ) phản ứng
k: là hằng số vận tốc phản ứng (hằng số tốc độ phản ứng), k phụ thuộc vào bản
chất phản ứng và nhiệt độ, k không phụ thộc vào nồng độ các chất.
m, n là các số thực, được suy ra từ thực nghiệm. Người ta nói phản ứng này có
bậc m (bậc riêng phần m) theo tác chất A; bậc n (bậc riêng phầ
n n) theo tác
chất B, và phản ứng có bậc tổng quát (bậc toàn phần) là (m + n). Chú ý là
các bậc phản ứng m, n trên được xác định dựa vào thực nghiệm, chứ không
phải dựa vào hệ số đứng trước mỗi tác chất. Chỉ khi nào phản ứng cho là
phản ứng đơn giản, nghĩa là chỉ xảy ra một giai đoạn, thì bậc riêng phần mỗi
tác chất bằng hệ số nguyên tối giản đứng trướ
c mỗi tác chất.

Thí dụ
: Với phản ứng trên, nếu ta giữ nồng độ chất B không đổi, ta tăng nồng độ chất A
lên 2 lần thì thấy vận tốc tăng lên 2 lần, hay khi làm giảm nồng độ một nửa thì
vận tốc phản ứng giảm một nửa. Như vậy phản ứng có bậc 1 theo tác chất A. Còn
nếu giữ nồng độ B lên 2 lần thì thấy vận tốc phản ứng tăng 4 lầ
n hay nếu làm
giảm nồng độ B 3 lần thì thấy vận tốc phản giảm 9 lần. Như vậy phản ứng có bậc
2 theo tác chất B. Do đó biểu thức vận tốc phản ứng sẽ là: v = k[A][B]
2
. Phản ứng
có bậc toàn phần là 1 + 2 = 3. Qua thí dụ này cho thấy
bậc phản ứng được xác
định từ thực nghiệm
.

Từ biểu thức v = k[A]
m
[B]
n
cũng cho biết khi nhiệt độ T thực hiện phản ứng tăng thì hằng
số vận tốc k phản ứng tăng, nên vận tốc v phản ứng tăng; Nhiệt độ thực hiện phản ứng
giảm thì k giảm nên vận tốc v phản ứng giảm. Do đó muốn làm tăng vận tốc phản ứng thì
thực hiện phản ứng ở nhiệt độ cao (như
đun nóng trên ngọn lửa), còn muốn giảm vận tốc
phản ứng thì thực hiện phản ứng ở nhiệt độ thấp (như làm lạnh phản ứng trong chậu nước
đá). Điều này giải thích thuyết va chạm của phản ứng hóa học. Khi nhiệt độ tăng thì làm
gia tăng chuyển động của các phân tử tác chất trong hệ phản ứng nên dễ có sự va chạm
(đụ
ng chạm) các phân tử tác chất và do đó khiến phản ứng xảy ra nhanh hơn. Khi hạ nhiệt
độ phản ứng thì các phân tử chuyển động chậm và do đó ít có sự va chạm giữa các phân tử
tác chất nên phản ứng xảy ra chậm. Cũng như khi nồng độ tác chất cao thì sự va chạm giữa
các phân tử tác chất xảy ra với xác suất cao hơn và do đó phản ứng xảy ra nhanh; còn khi
làm giảm nồng độ
tác chất thì xác suất va chạm giữa các phân tử tác chất nhỏ nên vận tốc
phản ứng nhỏ (phản ứng chậm).

Chỉ khi nào phản ứng xảy ra một giai đọan duy nhất (phản ứng đơn giản) thì bậc phản ứng
mới bằng các hệ số nguyên tối giản đứng trước mỗi tác chất. Khi theo dõi phản ứng (cơ chế
phản ứng), thì mỗi giai đoạn là m
ột phản ứng đơn giản. Để đơn giản, trong sách hóa học ở
phổ thông, coi các phản ứng như là các phản ứng đơn giản, một giai đoạn, do đó người ta
thường dựa vào các hệ số nguyên nhỏ nhất này để viết biểu thức vận tốc phản ứng.

Thí dụ
:
Sau đây là biểu thức vận tốc phản ứng của một số phản ứng sau (giả sử các phản ứng này
đều là các phản ứng đơn giản, xảy ra một giai đoạn):

a) 2SO
2
+ O
2


2SO
3
v = k[SO
2
]
2
[O
2
]

b) N
2
+ 3H
2
2NH
3
v = k[N
2
][H
2
]
3


c) H
2
(k) + I
2
(h)
⎯→⎯
2HI(k) v = k[H
2
][I
2
]

IV. Cân bằng hóa học

IV.1. Định nghĩa

Cân bằng hóa học là sự cân bằng giữa tác chất với sản phẩm trong một phản ứng cân
bằng (phản ứng thuận nghịch).

Một phản ứng hóa học cân bằng hay phản ứng thuận nghịch là một phản ứng xảy ra được
theo hai chiều ngược nhau trong cùng một điều kiện.

Thí dụ
: phản ứng este hóa giữa axit axetic với rượu etylic để tạo etyl axetat và nước là một
phản ứng thuận nghịch hay cân bằng:


CH
3
COOH
+
CH
3
CH
2
OH
H
2
SO
4
(ñ); t
0
CH
3
COOCH
2
CH
3
+
H
2
O
Axit axetic
Röôïu etylic
Etyl axetat Nöôùc


Phản ứng cân bằng xảy ra không hoàn toàn vì sau khi phản ứng không những thu được sản
phẩm mà còn hiện diện cả các tác chất. Thí dụ với phản este hóa trên nếu đem trộn 1 mol
axit axetic với 1 mol rượu etylic thì sau khi phản ứng xong (lúc đạt trạng thái cân bằng),
người ta thu được 2/3 mol etyl axetat, 2/3 mol nước và 1/3 mol axit axetic, 1/3 mol rượu
etylic.

Một phản ứng cân bằng được gọi là đạt trạng thái cân bằng (coi như phản ứng xong) khi
lượng các chất trong phản ứng (tác chất lẫn sản phẩm) không thay đổi theo thời gian. Lúc
này vận tốc phản ứng thuận và vận tốc phản ứng nghịch bằng nhau. Lúc bấy giờ, trong
cùng một đơn vị thời gian, nếu có bao nhiêu lượng tác chất bị mất đi do xảy ra phản ứng
thuận thì cũng có bấy nhiêu lượng tác chất này được tạo trở lại do xảy ra phản ứng nghịch.
Như vậy khi phản ứng đạt trạng thái cân bằng (coi như phản ứng xong) vẫn có phản ứng
thuận và phản ứng nghịch xảy ra, nhưng do vận tốc của hai phản ứng thuận và nghịch bằng
nhau nên lượng các chất trong phản ứng không đổi. Do đó cân bằng hóa học được coi là
cân bằng động.

IV.2. Nguyên lý chuyển dịch cân bằng (Nguyên lý Le Châtelier)

“Cân bằng sẽ dịch chuyển theo chiều chống lại y
ếu tố làm xáo trộn cân bằng.”

Cụ thể:
- Khi làm tăng nồng độ của một chất trong phản ứng (như thêm chất này vào hệ phản
ứng) thì cân bằng sẽ dịch chuyển theo chiều làm hạ nồng độ chất này xuống, tức là
chiều chất này tham gia phản ứng; Còn khi làm hạ nồng độ của một chất trong phản
ứng (như lấy chất này ra khỏi môi trường phản
ứng) thì cân bằng sẽ dịch chuyển theo
chiều làm tăng nồng độ chất này lên, tức là thiên về chiều tạo ra chất này. Như vậy khi
thêm một chất của phản ứng vào môi trường phản ứng thì cân bằng dịch chuyển theo
chiều chất này tham gia phản ứng. Còn khi lấy một chất của phản ứng ra khỏi môi
trường phản ứng thì phản ứng sẽ dịch chuyển theo chiều tạ
o ra thêm chất này.
- Khi tăng áp suất thì cân bằng dịch chuyển theo chiều làm hạ áp suất xuống, tức là thiên
về chiều tạo ra ít số mol khí hơn; Còn khi làm hạ áp suất thì cân bằng sẽ dịch chuyển
theo chiều làm tăng áp suất lên, tức là chiều tạo ra nhiều số mol khí hơn.

Xem chi tiết: hoadaicuong-pt


Không có nhận xét nào:

Đăng nhận xét